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| ntroduction

o Gain scheduled linear controllers for nonlinear systems

o C(Classica/neural synthesis of control systems

Prior knowledge
Adaptive control and artificial neural networks

« Adaptive critics
Learninrea time
Cope with noise
Cope with many variables
Plan over time in a complex way

Action network takes immediate control action

Critic network estimates projected cost



M otivation for Neural Networ k-Based Controller

Network of networks motivated by linear control structure

Multiphase learning:
Pre-training
On-line training during piloted simulations or testing

Improved global control

Pre-training phase provides:
A global neural network controller
An excellent initialization point for on-line learning

On-line training accounts for:
Differences between actual and assumed dynamic models
Nonlinear effects not captured in linearizations



Nonlinear Business Jet Aircraft Modd

Aircraft Equations of Motion:
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State vector: x(t)og” < X

Control vector:  u(t)OO"™ ) ™

Parameters: pt)o O’ Yg~

Output vector:  y(t)00O" Z, A Thust

Bolza Type Cost Function Minimization:

y=ef )]+ L )ue)elar



Value Function Minimization

Value Function for [t, t]:
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The minimization of J can be imbedded in the following problem:

vV [x(t),t] = rrvp[(p[x( ) f]+}L [x(r),u(r),r]dr%
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Discretized Optimization Problem

Approximate the equations of motion by a difference equation:

x(k +1)=f; [x(k).p(k).u(k)],

where: x(k)=x(kat), At=t, /k,, k - t =0,At,...,(k, —1)At Kk At
Similarly, the cost function:

J=glx(k,) k]+ZL [x(k),u(k), K]

The cost of operation during the last stage is:

Vi b, ~2huli, ~2)= bl e, ]+ L o, ~2huli, ~2)



ThePrinciple of Optimality
The optimal cost, from t, 4 10t IS then:
Vi bl 20 punfoble o, -, -2}
Similarly, the optimal cost over the last two intervalsis given by:
Vi Xk, —2)]=

u(kfg}?u'@kf_l){L D[X(kf - 2)’u(kf - 2)] Vi [X(kf _1)’u(kf _1)]}

By the principle of optimality, T _-="=~
Given'V,, v C
If V. Isoptimal fromato c,

then V, . is optimal from b to c: V' e = Vo t Vi



A Recurrence Relationship of Dynamic Programming

S0, the optimal cost for a 2-stage process can be re-written as.
Vi -2i XK, —2)|= ur(E\fi_r;){L x(k, = 2)ulk, = 2)]+V - }

Then, for ak-stage process:
[]

V*kf—n,kf [X(kf - n)] = min k ]+ Z L [X k) U(k)]D

(k —n) (k —n+1) []
= mln{ [x( ) (kf —n)]+V kf—n+1,kf}

Backward Dynamic Programming
« Beginat t;
e Move backward to t,

e Storedl uandV
o Off-line process




Forward Dynamic Programming

Cost associated with going from t, to t;:

VI =, =UBE ) ol + Vi)

Utility Estimated cost for t, ,, <t<t,

Hereon, lett=t, t+1=t,,, etc...

Estimate cost-to-go function, (e )
Determine immediate control action

Move forward in time, updating Vi <V >
cost-to-go function §

On-line process




Adaptive Critic Designs .. at a Glance!

L egend:

'H'": Heuristic

'DP': Dynamic Programming
'D": Dud

'P": Programming

'G". Global

'AD'": Action Dependent

ADHDP




Proportional-Integral Controller

Closed-loop stability:  x(t) - x., u(t) - u., ¥() -0
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Omitting A's, for smplicity:
y(t)=ys(t)-ye. Tlt)=ult)-uc...., y, = desired output, (x.,u_) = Set point.



Linearized Business Jet Aircraft M odel

Assuming small perturbations, expand about nominal solution:
Ax(t) = FAX(t) + GAu(t)
Ay(t)=H, Ax(t)+H Au(t)

af(xu) G = (x,u) Hy

where: F = , ,
0X ou 0X ou

The state variable is augmented to include the output error integral, &(t),

ax, 1) =[ax7() 28 0] =57 o0+ 5y BE)

X

and the Proportional-Integral cost function is defined as:

[AX ()20, () + 28x," (r)SAt(r) + A07 (r)RAT( fdr



Linear Proportional-Integral Control Law Formulation

From the Euler-Lagrange equations, the optimal™ control law is:
AT (1)=-R*GTP+M" |ax, (t)
= _CAXa(t) = _[CB CI ]Axa(t)

where P is a Riccati matrix.

Furthermore,

It can be shown that the optimal value function is
V[, (0] = T (0Pax, ()

and its partial derivative with respect to Ax, Is:

N [ax 0] =, 0P
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Proportional-Integral Neural Network Controller

Ys(t)

r

_ S0 Df (1)

L=

hs[x(t)u(t) |«

A

I
: I
| |
U, tyou) -* !
: »>o : AIRCRAFT l
1, -
! | |
| |
i I

X(t)

- p o«



Feedback and Command-Integral (Action)
Neural Network Pre-Training

Feedback Requirements (pre-training phase):
NNj accounts for regulation, Aug = NNg(AX, a).

For each operating point, k,
a z output and inputs:

o=pl pl]  —s

(R1) 2(0,a")=0
oz | _ d(Aug)
(R2) o, ™ o)

AX

= -Cg(a¥)

k
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Command-Integral Requirements (pre-training phase):

NN, provides dynamic compensation, Au, = NN, (A¢, a).

For each operating point, k,
a z output and inputs:

o=l ol —

(R1) 2(0,a¥)=0
_9d(Au))
. 9@

dpAE = _Cl(a )
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Critic Neural Network Pre-Training

From the Proportional-l ntegral optimal value function derivatives.

. A[AX (t)] [Ax t)=ax."t)P - aJo]=0

Critic Requirements (pre-training phase):
NN estimates the value function derivatives, A = NN~(AX,, ).

For each operating point, k,
a z output and training inputs:

= [praT paT]T —>




Action and Critic Neural Network On-line Training by
Dual Heuristic Programming

The same cost function is optimized in pre-training and in on-line learning

J= % Z [ax " (t)zox, (£) + 28" (£)SAT(E) + AT ()RAT(E)

The cost-to-go at timet,
Viax, ()] =u{ax, (t), aoax, OF +viax(t+3]),

must be minimized w.r.t. Ali(t), for an estimated cost-to-go at (t + 1).

The utility function is defined as:

Ulax. (), At = % [ax.T ()zax, () + 26x, (£)sAT () + AT ()RAT()]



Optimality Conditionsfor Dual Heuristic Programming

Differentiating both sides of the value function, V[Ax(t)], w.r.t. Ax(t):

X[Axa(t)]EaV[Axa()] _ o] , ou[] aAG[Axa(t)]+ <X:Axa(t+ 1)]6Axa(t+1)>+

OAx,(t)  0Ax () OAT(t) oAx,(t) OAX ()

<L[Axa(t +1) oAx, (t +1) aAU[Axa(t)]> =F_()

OAT(t)  aAx,(t)

Optimality equation: | oV[ax, (t)] _
OAi(t)

Differentiating w.r.t. the control, Ai(t):

oo+, () 22 2, (=0

OAi(t) OAi(t)




Action Network On-line Training

Train action network, at timet, holding the critic parameters fixed

> Aicraft Model

AX (t) (Discrete Time) | Ax (t+1)

Utility

AAx, (¢ +1)]

NN¢
OAx, (t +1)
OAT(t)

[Balakrishnan and Biega, 1996]



Critic Network On-line Training

Train critic network, at timet, holding the action parameters fixed

> Aicraft Model

AX (t) A(t) (Discrete Time) | Ax (t+1)
U () l
00X, (t) XY
Utility
AAx, (¢ +1)]

NN

OAx, (t+1) 04X, (t+1)
OAT(t) ' 04x,(t)

[Balakrishnan and Biega, 1996]



Summary

Aircraft optimal control problem
Linear multivariable control structure
Corresponding nonlinear controller
Adaptive critic architecture:

Action and critic networks

/

% Algebraic pre-training based on a-priori knowledge

/

% On-line training during simulations (severe conditions)



Conclusions and Future Work

Nonlinear, adaptive, real-time controller:
Maintain stability and robustness throughout flight envelope
Improve aircraft control performance under extreme conditions

Systematic approach for designing nonlinear control systems
motivated by well-known linear control structures

Innovative neura network training techniques
Future Work:
Adaptive critic architecture implementation

Testing: acrobatic maneuvers, severe operating conditions,
coupling and nonlinear effects



